STATS 217: Introduction to Stochastic Processes I

Lecture 9

Multi-step transition probabilities

- The transition probability $p_{i j}$ tells us the probability of going from i to j in one step, i.e.

$$
p_{i j}=\mathbb{P}\left[X_{1}=j \mid X_{0}=i\right] .
$$

- What about the probability of going from i to j in two steps i.e. what is

$$
p_{i j}^{2}:=\mathbb{P}\left[X_{2}=j \mid X_{0}=i\right] ?
$$

- Well, to go from i to j in two steps, we must go from i to some state $k \in S$ in one step and then from k to j in one step.

Multi-step transition probabilities

Using the law of total probability, we have

$$
\begin{aligned}
\mathbb{P}\left[X_{2}=j \mid X_{0}=i\right] & =\sum_{k \in S} \mathbb{P}\left[X_{1}=k \wedge X_{2}=j \mid X_{0}=i\right] \\
& =\sum_{k \in S} \mathbb{P}\left[X_{1}=k \mid X_{0}=i\right] \cdot \mathbb{P}\left[X_{2}=j \mid X_{0}=i \wedge X_{1}=k\right] \\
& =\sum_{k \in S} \mathbb{P}\left[X_{1}=k \mid X_{0}=i\right] \cdot \mathbb{P}\left[X_{2}=j \mid X_{1}=k\right] \\
& =\sum_{k \in S} p_{i k} p_{k j} \\
& =\left(P^{2}\right)_{i j} .
\end{aligned}
$$

Multi-step transition probabilities

- There is nothing special about two steps here and you should check that the same argument gives

$$
p_{i j}^{n}:=\mathbb{P}\left[X_{n}=j \mid X_{0}=i\right]=\left(P^{n}\right)_{i j} \quad \forall n \geq 1
$$

- Since for any non-negative integers ℓ, m,

$$
P^{\ell+m}=P^{\ell} P^{m}
$$

we obtain the Chapman-Kolmogorov equations

$$
p_{i j}^{\ell+m}=\sum_{k \in S} p_{i k}^{\ell} p_{k j}^{m} .
$$

Stopping times

- Let $\left(X_{n}\right)_{n \geq 0}$ be a stochastic process on a discrete state space S.
- We say that a random variable T is a stopping time if whether or not we stop at time k i.e., the event $\{T=k\}$, can be determined by the values of the process up to and including time k i.e., by X_{0}, \ldots, X_{k}.
- Example: let $\left(X_{n}\right)_{n \geq 0}$ be a symmetric simple random walk starting at 0 . Then, τ_{1}, the first time to hit 1 is a stopping time.
- Indeed, for all $k \geq 0$,

$$
\{T=k\}=\left\{X_{0} \neq 1, \ldots, X_{k-1} \neq 1, X_{k}=1\right\} .
$$

- Non-example: let $\left(X_{n}\right)_{n \geq 0}$ be a symmetric simple random walk starting at 0 . Then, $\tau^{\prime}=\tau_{1}-1$ is not a stopping time.

Strong Markov property

Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k \geq 0$, all $n \geq 0$, and for all $i, j \in S$,

$$
\mathbb{P}\left[X_{T+k}=j \mid X_{T}=i, T=n\right]=\mathbb{P}\left[X_{k}=j \mid X_{0}=i\right] .
$$

- This is called the Strong Markov Property. Why is this true?
- Let V_{n} be the set of all vectors $x=\left(x_{0}, \ldots, x_{n}\right) \in S^{n+1}$ such that

$$
X_{0}=x_{0}, \ldots, X_{n}=x_{n} \Longrightarrow T=n \text { and } X_{T}=i .
$$

- Since T is a stopping time,

$$
\mathbb{P}\left[X_{T}=i, T=n\right]=\mathbb{P}\left[\left(X_{0}, \ldots, X_{n}\right) \in V_{n}\right] .
$$

Strong Markov property

By the law of total probability,

$$
\begin{aligned}
\mathbb{P}\left[X_{T+k}=j, X_{T}=i, T=n\right] & =\sum_{x \in V_{n}} \mathbb{P}\left[X_{n+k}=j, X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right] \\
& =\sum_{x \in V_{n}} \mathbb{P}\left[X_{n+k}=j \mid X_{n}=x_{n}\right] \cdot \mathbb{P}\left[X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right] \\
& =\mathbb{P}\left[X_{k}=j \mid X_{0}=i\right] \sum_{x \in V_{n}} \mathbb{P}\left[X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right] \\
& =\mathbb{P}\left[X_{k}=j \mid X_{0}=i\right] \cdot \mathbb{P}\left[\left(X_{0}, \ldots, X_{n}\right) \in V_{n}\right] \\
& =\mathbb{P}\left[X_{k}=j \mid X_{0}=i\right] \cdot \mathbb{P}\left[X_{T}=i, T=n\right] .
\end{aligned}
$$

Hitting times

- Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on S with $X_{0} \sim \mu_{0}$.
- This just means that the initial state X_{0} is a random variable with

$$
\mathbb{P}\left[X_{0}=j\right]=\mu_{0}(j) \quad \forall j \in S
$$

- For a subset $A \subset S$, we define the first A-hitting time by

$$
\tau_{A, \mu_{0}}:=\min \left\{n \geq 1: X_{n} \in A\right\} .
$$

- If $\mu_{0}(s)=1$ for some $s \in S$ (i.e., $\mu_{0}=\delta_{s}$) then we lighten the notation a bit and write this as $\tau_{A, s}$.
- Note that the minimum is taken over $n \geq 1$. Therefore,

$$
\tau_{\{s\}, s}=: T_{s}
$$

is the first time we return to s, starting from s.

Number of visits

- For every $s \in S$, we let

$$
f_{s}:=\mathbb{P}\left[T_{s}<\infty\right] .
$$

In words, f_{s} is the probability that chain will ever return to s, provided that it starts at s.

- For every $s \in S$ and initial distribution μ_{0}, we let

$$
N_{\mu_{0}}(s)=\sum_{n=1}^{\infty} 1\left[X_{n}=s\right] .
$$

In words, $N_{\mu_{0}}(s)$ is the number of times we visit s (counting from time 1 onwards), starting with an initial state distributed according to μ_{0}.

- For lightness of notation, we set

$$
N(s):=N_{\delta_{s}}(s)
$$

Number of returns

- Just as for the symmetric simple random walk, we have for any $k \geq 1$ that

$$
\mathbb{P}\left[N(s) \geq k \mid X_{0}=s\right]=\mathbb{P}\left[N(s) \geq k-1 \mid X_{0}=s\right] \cdot f_{s}
$$

- By induction, this shows that for all $k \geq 1$,

$$
\mathbb{P}\left[N(s) \geq k \mid X_{0}=s\right]=f_{s}^{k} .
$$

- Therefore, for all $k \geq 0$

$$
\mathbb{P}\left[N(s)=k \mid X_{0}=s\right]=f_{s}^{k}\left(1-f_{s}\right),
$$

and

$$
\mathbb{E}\left[N(s) \mid X_{0}=s\right]=\frac{f_{s}}{\left(1-f_{s}\right)} .
$$

Number of returns

How do we show that

$$
\mathbb{P}\left[N(s) \geq k \mid X_{0}=s\right]=\mathbb{P}\left[N(s) \geq k-1 \mid X_{0}=s\right] \cdot f_{s} ?
$$

- Let T be the time of the $(k-1)^{\text {st }}$ return to s. Note that T is a stopping time.
- By the Strong Markov property, we have

$$
\mathbb{P}\left[N(s) \geq k \mid T=n, X_{T}=s\right]=\mathbb{P}\left[N(s) \geq 1 \mid X_{0}=s\right]=f_{s}
$$

- By Bayes' rule,

$$
\mathbb{P}\left[N(s) \geq k, T=n, X_{T}=s\right]=f_{s} \cdot \mathbb{P}\left[T=n, X_{T}=s\right] .
$$

Number of returns

- Summing this over n and using the law of total probability, we have

$$
\begin{aligned}
\mathbb{P}[N(s) \geq k] & =\mathbb{P}[N(s) \geq k, T<\infty] \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left[N(s) \geq k, T=n, X_{T}=s\right] \\
& =f_{s} \cdot \sum_{n=0}^{\infty} \mathbb{P}\left[T=n, X_{T}=s\right] \\
& =f_{s} \cdot \mathbb{P}[T<\infty] \\
& =f_{s} \cdot \mathbb{P}[N(s) \geq k-1] .
\end{aligned}
$$

Recurrence and transience

Let $\left(X_{n}\right)_{n \geq 0}$ be a DTMC on S.

- $s \in S$ is a recurrent state if $f_{s}=1$.
- $s \in S$ is a transient state if $f_{s}<1$.
- By the formula

$$
\mathbb{E}\left[N(s) \mid X_{0}=s\right]=\frac{f_{s}}{1-f_{s}},
$$

we see that

- f_{s} is recurrent $\Longleftrightarrow \mathbb{E}\left[N(s) \mid X_{0}=s\right]=\infty$.
- f_{s} if transient $\Longleftrightarrow \mathbb{E}\left[N(s) \mid X_{0}=s\right]<\infty$.

