STATS 217: Introduction to Stochastic Processes I

Lecture 9

• The transition probability p_{ij} tells us the probability of going from *i* to *j* in *one* step, i.e.

$$p_{ij} = \mathbb{P}[X_1 = j \mid X_0 = i].$$

• The transition probability p_{ij} tells us the probability of going from *i* to *j* in *one* step, i.e.

$$p_{ij} = \mathbb{P}[X_1 = j \mid X_0 = i].$$

• What about the probability of going from *i* to *j* in *two* steps i.e. what is $\begin{pmatrix} \mathbf{p}_{i} \\ \mathbf{p}_{ij} \end{pmatrix}^{2} \qquad p_{ij}^{2} := \mathbb{P}[X_{2} = j \mid X_{0} = i]?$ $= \begin{pmatrix} \mathbf{p}_{i} \\ \mathbf{p}_{ij} \end{pmatrix}^{2} \begin{pmatrix} \mathbf{p}_{ij} \\ \mathbf{p}_{ij} \end{pmatrix}^{2} = p[X_{2} = j \mid X_{0} = i]?$

• The transition probability p_{ij} tells us the probability of going from *i* to *j* in *one* step, i.e.

$$p_{ij} = \mathbb{P}[X_1 = j \mid X_0 = i].$$

• What about the probability of going from *i* to *j* in *two* steps i.e. what is

$$p_{ij}^2 := \mathbb{P}[X_2 = j \mid X_0 = i]?$$

 Well, to go from i to j in two steps, we must go from i to some state k ∈ S in one step and then from k to j in one step.

k could be j

$$\mathbb{P}[X_2=j\mid X_0=i] \stackrel{\checkmark}{=} \sum_{k\in S} \mathbb{P}[X_1=k \land X_2=j\mid X_0=i]$$

$$\mathbb{P}[X_{2} = j \mid X_{0} = i] = \sum_{k \in S} \mathbb{P}[X_{1} = k \land X_{2} = j \mid X_{0} = i]$$

$$= \sum_{k \in S} \mathbb{P}[X_{1} = k \mid X_{0} = i] \cdot \mathbb{P}[X_{2} = j \mid X_{0} = i \land X_{1} = k]$$

$$\int_{\Gamma_{i} \subset X_{i}} \int_{\Gamma_{i} \subset X_{i}} \int_{\Gamma_{$$

$$\mathbb{P}[X_2 = j \mid X_0 = i] = \sum_{k \in S} \mathbb{P}[X_1 = k \land X_2 = j \mid X_0 = i]$$
$$= \sum_{k \in S} \mathbb{P}[X_1 = k \mid X_0 = i] \cdot \mathbb{P}[X_2 = j \mid X_0 = i \land X_1 = k]$$
$$= \sum_{k \in S} \mathbb{P}[X_1 = k \mid X_0 = i] \cdot \mathbb{P}[X_2 = j \mid X_1 = k]$$

$$\mathbb{P}[X_{2} = j \mid X_{0} = i] = \sum_{k \in S} \mathbb{P}[X_{1} = k \land X_{2} = j \mid X_{0} = i]$$

= $\sum_{k \in S} \mathbb{P}[X_{1} = k \mid X_{0} = i] \cdot \mathbb{P}[X_{2} = j \mid X_{0} = i \land X_{1} = k]$
= $\sum_{k \in S} \mathbb{P}[X_{1} = k \mid X_{0} = i] \cdot \mathbb{P}[X_{2} = j \mid X_{1} = k]$
= $\sum_{k \in S} p_{ik} p_{kj}$
= $(P^{2})_{ij}$.

 There is nothing special about two steps here and you should check that the same argument gives

$$p_{ij}^n := \mathbb{P}[X_n = j \mid X_0 = i] = (P^n)_{ij} \quad \forall n \ge 1.$$

 There is nothing special about two steps here and you should check that the same argument gives

$$p_{ij}^n := \mathbb{P}[X_n = j \mid X_0 = i] = (P^n)_{ij} \quad \forall n \ge 1.$$

• Since for any non-negative integers ℓ, m ,

$$P^{\ell+m} = P^{\ell}P^{m}, \quad =) \quad \left(\begin{array}{c} P^{\ell+m} \end{array} \right) i j^{\prime}$$
we obtain the **Chapman-Kolmogorov equations**

$$p_{ij}^{\ell+m} = \sum_{k \in S} p_{ik}^{\ell} p_{kj}^{m}.$$

· · · · ·

- Let $(X_n)_{n\geq 0}$ be a stochastic process on a discrete state space S.
- We say that a random variable T is a stopping time if whether or not we stop at time k i.e., the event {T = k}, can be determined by the values of the process up to and including time k i.e., by X₀,...,X_k.

- Let $(X_n)_{n\geq 0}$ be a stochastic process on a discrete state space S.
- We say that a random variable *T* is a **stopping time** if whether or not we stop at time *k* i.e., the event {*T* = *k*}, can be determined by the values of the process up to and including time *k* i.e., by *X*₀,...,*X*_k.
- Example: let (X_n)_{n≥0} be a symmetric simple random walk starting at 0. Then, τ₁, the first time to hit 1 is a stopping time.

- Let $(X_n)_{n\geq 0}$ be a stochastic process on a discrete state space S.
- We say that a random variable *T* is a **stopping time** if whether or not we stop at time *k* i.e., the event {*T* = *k*}, can be determined by the values of the process up to and including time *k* i.e., by *X*₀,...,*X*_k.
- Example: let (X_n)_{n≥0} be a symmetric simple random walk starting at 0. Then, τ₁, the first time to hit 1 is a stopping time.
- Indeed, for all $k \ge 0$, τ_{1} $\{ \mathcal{F} = k \} = \{ X_0 \neq 1, \dots, X_{k-1} \neq 1, X_k = 1 \}.$

- Let $(X_n)_{n\geq 0}$ be a stochastic process on a discrete state space S.
- We say that a random variable T is a stopping time if whether or not we stop at time k i.e., the event {T = k}, can be determined by the values of the process up to and including time k i.e., by X₀,..., X_k.
- Example: let (X_n)_{n≥0} be a symmetric simple random walk starting at 0. Then, τ₁, the first time to hit 1 is a stopping time.
- Indeed, for all $k \ge 0$,

$$\{T = k\} = \{X_0 \neq 1, \dots, X_{k-1} \neq 1, X_k = 1\}.$$

 Non-example: let (X_n)_{n≥0} be a symmetric simple random walk starting at 0. Then, τ' = τ₁ − 1 is not a stopping time.

Strong Markov property $\mathbb{R}\left[X_{k+1}=j \mid X_{k}=i, X_{k-1}=x_{2}, \ldots, x_{0}=*\right]$ = $\mathbb{P}\left[X_{k+1}=j \mid X_{k}=i\right]$.

Let $(X_n)_{n\geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k\geq 0$, all $n\geq 0$, and for all $i,j\in S$,

$$\mathbb{P}[X_{T+k}=j\mid X_T=i, T=n]=\mathbb{P}[X_k=j\mid X_0=i].$$

• This is called the **Strong Markov Property**.

Why do we need
T to be A
Stopping time?

$$e \cdot q \cdot T = \tau_1 (= \tau_1 - 1)$$

 $be that $x_T = 1$
 $Be for x_T = 1$$

e.q. if T= Z1

T=n it much

Let $(X_n)_{n\geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k\geq 0$, all $n\geq 0$, and for all $i,j\in S$,

$$\mathbb{P}[X_{T+k}=j\mid X_T=i, T=n]=\mathbb{P}[X_k=j\mid X_0=i].$$

• This is called the Strong Markov Property. Why is this true?

Let $(X_n)_{n\geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k\geq 0$, all $n\geq 0$, and for all $i,j\in S$,

$$\mathbb{P}[X_{T+k}=j\mid X_T=i, T=n]=\mathbb{P}[X_k=j\mid X_0=i].$$

- This is called the Strong Markov Property. Why is this true?
- Let V_n be the set of all vectors $x = (x_0, \dots, x_n) \in S^{n+1}$ such that

$$X_0 = x_0, \dots, X_n = x_n \implies T = n \text{ and } X_T = i.$$

Let $(X_n)_{n\geq 0}$ be a DTMC on S and let T be a stopping time. Then, for all $k\geq 0$, all $n\geq 0$, and for all $i,j\in S$,

$$\mathbb{P}[X_{T+k}=j \mid X_T=i, T=n] = \mathbb{P}[X_k=j \mid X_0=i].$$

- This is called the Strong Markov Property. Why is this true?
- Let V_n be the set of all vectors $x = (x_0, \dots, x_n) \in S^{n+1}$ such that

$$X_0 = x_0, \ldots, X_n = x_n \implies T = n \text{ and } X_T = i.$$

• Since T is a stopping time, $\mathbb{P}[X_T = i, T = n] = \mathbb{P}[(X_0, \dots, X_n) \in V_n].$

$$X = (X_0, \dots, X_n)$$

By the law of total probability,
$$P[X_{T+k} = j \land (X_0, \dots, X_n) \in V_n]$$

$$P[X_{T+k} = j, X_T = i, T = n] = \sum_{x \in V_n} P[X_{n+k} = j, X_n = x_n, \dots, X_0 = x_0]$$

$$= \sum_{x \in V_n} P[X_{n+k} = j \mid X_n = x_n, \dots, X_0 = x_0]$$

$$= \sum_{x \in V_n} P[X_{n+k} = j \mid X_n = x_n, \dots, X_0 = x_0]$$

$$= P[X_{n+k} = j \mid X_n = x_n, \dots, X_0 = x_0]$$

$$= P[X_{n+k} = j \mid X_n = x_n, \dots, X_0 = x_0]$$

$$\mathbb{P}[X_{T+k} = j, X_T = i, T = n] = \sum_{x \in V_n} \mathbb{P}[X_{n+k} = j, X_n = x_n, \dots, X_0 = x_0]$$

= $\sum_{x \in V_n} \mathbb{P}[X_{n+k} = j \mid X_n = x_n] \cdot \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \sum_{x \in V_n} \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$

$$\mathbb{P}[X_{T+k} = j, X_T = i, T = n] = \sum_{x \in V_n} \mathbb{P}[X_{n+k} = j, X_n = x_n, \dots, X_0 = x_0]$$

= $\sum_{x \in V_n} \mathbb{P}[X_{n+k} = j \mid X_n = x_n] \cdot \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \sum_{x \in V_n} \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \cdot \mathbb{P}[(X_0, \dots, X_n) \in V_n]$

$$\mathbb{P}[X_{T+k} = j, X_T = i, T = n] = \sum_{x \in V_n} \mathbb{P}[X_{n+k} = j, X_n = x_n, \dots, X_0 = x_0]$$

= $\sum_{x \in V_n} \mathbb{P}[X_{n+k} = j \mid X_n = x_n] \cdot \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \sum_{x \in V_n} \mathbb{P}[X_n = x_n, \dots, X_0 = x_0]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \cdot \mathbb{P}[(X_0, \dots, X_n) \in V_n]$
= $\mathbb{P}[X_k = j \mid X_0 = i] \cdot \mathbb{P}[X_T = i, T = n].$

Hitting times

$\sim\sim\sim\sim$

- Let $(X_n)_{n\geq 0}$ be a Markov chain on S with $X_0 \sim \mu_0$.
- This just means that the initial state X_0 is a random variable with

$$\mathbb{P}[X_0 = j] = \mu_0(j) \quad \forall j \in S.$$

Hitting times

- Let $(X_n)_{n\geq 0}$ be a Markov chain on S with $X_0 \sim \mu_0$.
- This just means that the initial state X_0 is a random variable with

$$\mathbb{P}[X_0=j]=\mu_0(j)\quad \forall j\in S.$$

• For a subset $A \subset S$, we define the first A-hitting time by

$$\tau_{A,\mu_0} := \min\{n \ge 1 : X_n \in A\}.$$

• If $\mu_0(s) = 1$ for some $s \in S$ (i.e., $\mu_0 = \delta_s$) then we lighten the notation a bit and write this as $\tau_{A,s}$. \downarrow feltadist-at-Sheltafeltahelta

e.g. S= Z

A = 513

Hitting times

- Let $(X_n)_{n\geq 0}$ be a Markov chain on S with $X_0 \sim \mu_0$.
- This just means that the initial state X_0 is a random variable with

$$\mathbb{P}[X_0=j]=\mu_0(j)\quad\forall j\in S.$$

• For a subset $A \subset S$, we define the first A-hitting time by

$$\tau_{\mathcal{A},\mu_0} := \min\{n \ge 1 : X_n \in \mathcal{A}\}.$$

- If $\mu_0(s) = 1$ for some $s \in S$ (i.e., $\mu_0 = \delta_s$) then we lighten the notation a bit and write this as $\tau_{A,s}$.
- Note that the minimum is taken over $n \ge 1$. Therefore,

$$\tau_{\{s\},s} =: \underline{T_s}$$

is the first time we return to s, starting from s.

Number of visits

• For every $s \in S$, we let

$$f_s := \mathbb{P}[T_s < \infty].$$

٠

In words, f_s is the probability that chain will ever return to s, provided that it starts at s.

Number of visits

• For every $s \in S$, we let

$$f_s := \mathbb{P}[T_s < \infty].$$

In words, f_s is the probability that chain will ever return to s, provided that it starts at s.

• For every $s \in S$ and initial distribution μ_0 , we let

$$N_{\mu_0}(s)=\sum_{n=1}^\infty \mathbb{1}[X_n=s].$$

In words, $N_{\mu_0}(s)$ is the number of times we visit s (counting from time 1 onwards), starting with an initial state distributed according to μ_0 .

Number of visits

• For every $s \in S$, we let

$$f_s := \mathbb{P}[T_s < \infty].$$

In words, f_s is the probability that chain will ever return to s, provided that it starts at s.

• For every $s \in S$ and initial distribution μ_0 , we let

$$N_{\mu_0}(s)=\sum_{n=1}^\infty \mathbb{1}[X_n=s].$$

In words, $N_{\mu_0}(s)$ is the number of times we visit s (counting from time 1 onwards), starting with an initial state distributed according to μ_0 .

• For lightness of notation, we set

$$N(s) := N_{\delta_s}(s).$$

• Just as for the symmetric simple random walk, we have for any $k \ge 1$ that

$$\mathbb{P}[N(s) \ge k \mid X_0 = s] = \mathbb{P}[N(s) \ge k - 1 \mid X_0 = s] \cdot f_s.$$

$$\underset{\text{must return}}{\overset{\text{must return}}{\underset{\text{z k-1$ times}}{\overset{\text{must return}}{\underset{\text{z once after-k-1}^{st-ret-vrn.}}}}$$

• Just as for the symmetric simple random walk, we have for any $k \geq 1$ that

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = \mathbb{P}[N(s) \geq k - 1 \mid X_0 = s] \cdot f_s.$$

 $f_{s} = \mathbb{P}(T_{s} < \infty)$

• By induction, this shows that for all $k \ge 1$,

$$\mathbb{P}[N(s) \ge k \mid X_0 = s] = f_s^k.$$

• Just as for the symmetric simple random walk, we have for any $k \geq 1$ that

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = \mathbb{P}[N(s) \geq k-1 \mid X_0 = s] \cdot f_s.$$

• By induction, this shows that for all $k \ge 1$,

$$\mathbb{P}[N(s) \ge k \mid X_0 = s] = f_s^k$$

• Therefore, for all
$$k \ge 0$$

$$\mathbb{P}[N(s) = k \mid X_0 = s] = f_s^k (1 - f_s), \quad i \ge 1 \le 1$$
and

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{(1 - f_s)}, \quad \mathbb{E}[N(s) \mid X_s = s]$$

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{(1 - f_s)}, \quad \mathbb{E}[N(s) \mid X_s = s]$$

How do we show that

$$\mathbb{P}[N(s) \ge \widetilde{k} \mid X_0 = s] = \mathbb{P}[N(s) \ge \widetilde{k-1} \mid X_0 = s] \cdot f_s?$$

* idea: define correct stopping hime
a use strong markov.
* natural: T is the time f
 $(k-1)^{st}$ return to S.

How do we show that

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = \mathbb{P}[N(s) \geq k - 1 \mid X_0 = s] \cdot f_s?$$

• Let T be the time of the $(k-1)^{st}$ return to s. Note that T is a stopping time.

How do we show that

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = \mathbb{P}[N(s) \geq k - 1 \mid X_0 = s] \cdot f_s?$$

- Let T be the time of the $(k-1)^{st}$ return to s. Note that T is a stopping time.
- By the Strong Markov property, we have

$$\mathbb{P}[N(s) \geq k \mid T = n, X_T = s] = \mathbb{P}[N(s) \geq 1 \mid X_0 = s] = f_s.$$

How do we show that

$$\mathbb{P}[N(s) \geq k \mid X_0 = s] = \mathbb{P}[N(s) \geq k - 1 \mid X_0 = s] \cdot f_s?$$

- Let T be the time of the $(k-1)^{st}$ return to s. Note that T is a stopping time.
- By the Strong Markov property, we have

$$\mathbb{P}[N(s) \geq k \mid T = n, X_T = s] = \mathbb{P}[N(s) \geq 1 \mid X_0 = s] = f_s.$$

• By Bayes' rule,

$$\mathbb{P}[N(s) \ge k, T = n, X_T = s] = f_s \cdot \mathbb{P}[T = n, X_T = s].$$

 $\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$

$$\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$$

= $\sum_{n=0}^{\infty} \mathbb{P}[N(s) \ge k, T = n, X_T = s]$

$$\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$$

$$= \sum_{n=0}^{\infty} \mathbb{P}[N(s) \ge k, T = n, X_T = s]$$
Shrong
$$= f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$

$$f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$

$$f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$

$$f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$

$$\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$$
$$= \sum_{n=0}^{\infty} \mathbb{P}[N(s) \ge k, T = n, X_T = s]$$
$$= f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$
$$= f_s \cdot \mathbb{P}[T < \infty]$$

$$\mathbb{P}[N(s) \ge k] = \mathbb{P}[N(s) \ge k, T < \infty]$$
$$= \sum_{n=0}^{\infty} \mathbb{P}[N(s) \ge k, T = n, X_T = s]$$
$$= f_s \cdot \sum_{n=0}^{\infty} \mathbb{P}[T = n, X_T = s]$$
$$= f_s \cdot \mathbb{P}[T < \infty]$$
$$= f_s \cdot \mathbb{P}[N(s) \ge k - 1].$$

Recurrence and transience

Let $(X_n)_{n\geq 0}$ be a DTMC on S.

- $s \in S$ is a recurrent state if $f_s = 1$.
- $s \in S$ is a transient state if $f_s < 1$.

Recurrence and transience

Let $(X_n)_{n\geq 0}$ be a DTMC on S.

- $s \in S$ is a recurrent state if $f_s = 1$.
- $s \in S$ is a transient state if $f_s < 1$.
- By the formula

$$\mathbb{E}[N(s) \mid X_0 = s] = \frac{f_s}{1 - f_s},$$

we see that

- f_s is recurrent $\iff \mathbb{E}[N(s) \mid X_0 = s] = \infty$.
- f_s if transient $\iff \mathbb{E}[N(s) \mid X_0 = s] < \infty$.