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|
Multi-step transition probabilities

@ The transition probability p;; tells us the probability of going from i to j in
one step, i.e.
Py =PXe = j | Xo = i].
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Multi-step transition probabilities

@ The transition probability p;; tells us the probability of going from i to j in
one step, i.e.
Py =PXe = j | Xo = i].

@ What about the probability of going from i to j in two steps i.e. what is

(?l‘ﬂ? p;=PPe=j|Xo=i]?
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|
Multi-step transition probabilities

@ The transition probability p;; tells us the probability of going from i to j in
one step, i.e.
Py =PXe = j | Xo = i].

@ What about the probability of going from i to j in two steps i.e. what is

pi=PXa=j|Xo=i]?

@ Well, to go from i to j in two steps, we must go from / to some state k € S
in one step and then from k to j in one step.
K could

be J
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|
Multi-step transition probabilities

Using the law of total probability, we have

PXo=jXo=1=) PXi=kAXo=j]|Xo=1]
keS
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Multi-step transition probabilities

Using the law of total probability, we have

PXo=j|Xo=11=) PXi=kAXo=j]|Xo=1]
keS
=Y PXa=k|Xo=1i]-PXo=j|Xo=iAXA =K|
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Multi-step transition probabilities

Using the law of total probability, we have

PXo=j|Xo=11=) PXi=kAXo=j]|Xo=1]

keS

=Y PXa=k|Xo=1i]-PXo=j|Xo=iAXA =K|
keS

=Y PXi=k|Xo=i]-PXo=j| X1 =K
kes
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|
Multi-step transition probabilities

Using the law of total probability, we have

PXo=j|Xo=11=) PXi=kAXo=j]|Xo=1]

kes

=Y PXa=k|Xo=1i]-PXo=j|Xo=iAXA =K|
keS

=Y PXi=k|Xo=i]-PXo=j| X1 =K
keS

:Zpikpkj
keS

= (P?);.
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|
Multi-step transition probabilities

@ There is nothing special about two steps here and you should check that the
same argument gives

Py = BXo = Xo=i]= (P"); ¥n>1
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|
Multi-step transition probabilities

@ There is nothing special about two steps here and you should check that the
same argument gives

Py = BXo = Xo=i]= (P"); ¥n>1

@ Since for any non-negative integers ¢, m,

prm — ptpm =) ( (7"”'“3.]'

- gam
we obtain the Chapman-Kolmogorov equations - ( f :\) ) \'d'
pirm =" phpp.
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|
Stopping times

@ Let (X,)n>0 be a stochastic process on a discrete state space S.

@ We say that a random variable T is a stopping time if whether or not we
stop at time k i.e., the event {T = k}, can be determined by the values of
the process up to and including time k i.e., by Xo,..., Xk.
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Stopping times

@ Let (X,)n>0 be a stochastic process on a discrete state space S.

@ We say that a random variable T is a stopping time if whether or not we
stop at time k i.e., the event {T = k}, can be determined by the values of
the process up to and including time k i.e., by Xo,..., Xk.

e Example: let (X,)n>0 be a symmetric simple random walk starting at 0.
Then, 71, the first time to hit 1 is a stopping time.
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|
Stopping times

@ Let (X,)n>0 be a stochastic process on a discrete state space S.

@ We say that a random variable T is a stopping time if whether or not we
stop at time k i.e., the event {T = k}, can be determined by the values of
the process up to and including time k i.e., by Xo,..., Xk.

e Example: let (X,)n>0 be a symmetric simple random walk starting at 0.
Then, 71, the first time to hit 1 is a stopping time.

@ Indeed, for all kK > 0,

Ta
F=k={X#1... Xk1#1,X=1}

SIS 27 T3



|
Stopping times

@ Let (X,)n>0 be a stochastic process on a discrete state space S.

@ We say that a random variable T is a stopping time if whether or not we
stop at time k i.e., the event {T = k}, can be determined by the values of
the process up to and including time k i.e., by Xo,..., Xk.

e Example: let (X,)n>0 be a symmetric simple random walk starting at 0.
Then, 71, the first time to hit 1 is a stopping time.

@ Indeed, for all kK > 0,

{T=k}={Xo#1,..., X1 # 1, X, = 1}.

@ Non-example: let (X,),>0 be a symmetric simple random walk starting at 0.
Then, 7/ = 71 — 1 is not a stopping time.
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Strong Markov property

WMOREY  pRop:
B Dt LKy =i, o= %5000, %= ]
= 0 U= §) Y = ]
Let (Xi)n>0 be a DTMC on S and let T be a stopping time. Then, for all kK >0,

alln>0,and forall i,j € S,

]PJ[XT_H(:j‘XT:i,T:n]:P[Xk:j|X0:i].

ey i T-7
@ This is called the Strong Markov Property.
T=n, i+ mvelr
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Strong Markov property

Let (Xi)n>0 be a DTMC on S and let T be a stopping time. Then, for all kK >0,
alln>0,and forall i,j € S,

P[XT+;<:j‘XT:i,T:n]:P[Xk:j|X0:i].

@ This is called the Strong Markov Property. Why is this true?
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|
Strong Markov property

Let (Xi)n>0 be a DTMC on S and let T be a stopping time. Then, for all kK >0,
alln>0,and forall i,j € S,

]PJ[XT_H(:j‘XT:i,T:n]:P[Xk:j|X0:i].

@ This is called the Strong Markov Property. Why is this true?

o Let V, be the set of all vectors x = (xo, ..., x,) € S"1 such that
Xo=x0,...,Xn=Xo = T =nand X7 =1.
N NN
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|
Strong Markov property

Let (Xi)n>0 be a DTMC on S and let T be a stopping time. Then, for all kK >0,
alln>0,and forall i,j € S,

]P’[XT+k:j\XT:i,T:n]:]P’[Xk:j|X0:i].

NN
@ This is called the Strong Markov Property. Why is this true?
o Let V, be the set of all vectors x = (xo, ..., x,) € S"1 such that
Xo=x0,...,Xn=Xo = T =nand X7 =1.

Since T i . eq. hefore  Shows Fhot AT
@ JSince IS a stopping time, ‘_an +eue _PQL non- S.kimas.

P[Xr =i, T = n] = P[(Xo, ..., Xn) € Vi].
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Strong Markov property

*= (Xo,.-., xv\\

| eV,
By the law of total probability,/ R (Xrse =] N (Xo...xn) & “)
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|
Strong Markov property

By the law of total probability,

P Xtk =i, Xr =i, T=n] =Y PXosk =, Xo = Xn, ..., Xo = x0]
xeV,

oV .
" ?N?r 7:ZP[Xn+k:J|Xn:Xn]'P[Xn:an“vXO:XO]
XEV, NN

\
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|
Strong Markov property

By the law of total probability,

P Xtk =i, Xr =i, T=n] =Y PXosk =, Xo = Xn, ..., Xo = x0]

xeV,

= PXosk =J | Xo = xa] - P[Xp = X, ..., Xo = X0]
xeV,

=PXe=j|Xo=1>_ PXp=xn..., X =

xeV,

SIS B DIE



|
Strong Markov property

By the law of total probability,

P Xtk =i, Xr =i, T=n] =Y PXosk =, Xo = Xn, ..., Xo = x0]

xeV,

= PXosk =J | Xo = xa] - P[Xp = X, ..., Xo = X0]
xeV,

=PXe=j|Xo=1>_ PXp=xn..., X =

xeV,
=PXe=j | Xo = i]- P[(Xo, ..., Xn) € V]
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|
Strong Markov property

By the law of total probability,

P Xtk =i, Xr =i, T=n] =Y PXosk =, Xo = Xn, ..., Xo = x0]

xeV,

= PXosk =J | Xo = xa] - P[Xp = X, ..., Xo = X0]
xeV,

=PXe=j|Xo=1>_ PXp=xn..., X =

xeV,
=P[Xe =j | Xo = 1] - P[(Xo, ..., X,) € V5]
:P[Xk :j|X0:i]~]P’[XT:i,T:n].
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|
Hitting times

NN~
o Let (X,)n>0 be a Markov chain on S with Xy ~ po.

@ This just means that the initial state Xy is a random variable with

P[Xo =jl = molj) VieS.
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|
Hitting times

o Let (X,)n>0 be a Markov chain on S with Xy ~ po.
@ This just means that the initial state Xy is a random variable with
P[Xo =j]1=mo(j) V€S
e.q.
o For a subset A C S, we define the first A-hitting time by S= z

A =0T

Tau, = min{n >1:X, € A}.

o If puo(s) =1 for some s € S (i.e., o = ds) then we lighten the notation a bit

and write this as 74 . VA e. (1 jom\\ell'l
" d\e“‘ﬁ ‘—S RU\." wl‘\'
— dist- a - #4200
T, s, \0d

A = §-too, 2oof.
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|
Hitting times

o Let (X,)n>0 be a Markov chain on S with Xy ~ po.

@ This just means that the initial state Xy is a random variable with

P[Xo =jl = molj) VieS.

@ For a subset A C S, we define the first A-hitting time by
Tau, = min{n >1:X, € A}.

o If puo(s) =1 for some s € S (i.e., o = ds) then we lighten the notation a bit
and write this as 74 s.

@ Note that the minimum is taken over n > 1. Therefore,
T{s},s = Is

. . . ~ l’ .
is the first time we return to s, starting from s.
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N
Number of visits

o Forevery s €S, we let
fo :=P[Ts < ).

In words, f; is the probability that chain will ever return to s, provided that it
starts at s.
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N
Number of visits

o Forevery s €S, we let
fo :=P[Ts < ).

In words, f; is the probability that chain will ever return to s, provided that it
starts at s.

o For every s € S and initial distribution pg, we let

oo

Noo(s) = 310X, = sl.

n=1

In words, N, (s) is the number of times we visit s (counting from time 1
onwards), starting with an initial state distributed according to 1.
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N
Number of visits

o Forevery s €S, we let
fo :=P[Ts < ).

In words, f; is the probability that chain will ever return to s, provided that it
starts at s.
o For every s € S and initial distribution pg, we let

oo

Noo(s) = 310X, = sl.

n=1

In words, N, (s) is the number of times we visit s (counting from time 1
onwards), starting with an initial state distributed according to 1.

@ For lightness of notation, we set

N(s) := Ns,(s).

s
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Number of returns

@ Just as for the symmetric simple random walk, we have for any k > 1 that

P[N(s) > k | Xo = s] = PIN(s) > k ~ 1| Xo = o] - f.
(Va0 L OV VLS
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Number of returns
@ Just as for the symmetric simple random walk, we have for any k > 1 that
PN(s) > k| Xo=s]=P[N(s) > k—1| Xy =5s]f.

431 @_(—rg <00)

@ By induction, this shows that for all kK > 1,

P[N(s) > k | Xo = s] = fX.
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Number of returns

@ Just as for the symmetric simple random walk, we have for any k > 1 that

PN(s) > k| Xo=s]=P[N(s) > k—1| Xy =5s]f.
@ By induction, this shows that for all kK > 1,
P[N(s) > k | Xo = s] = fX.

2 1% =87
@ Therefore, for all k >0 0 ~s) 2 e \ %o

= - R @)z e+
P[N(s) = k | Xo = s] = f¥(1 - £), | % =<1
and noke ¢ _F: -4
e ®ins e

EIN(s) | Xo = s] =

(1_7[5). = Co,
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Number of returns

How do we show that

PIN(s) >k | Xo = 5] = P[N(s) > k — 1| Xo = 5] - £

- o . NS
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Number of returns

How do we show that

P[N(s) > k| Xo=5s] =P[N(s) > k—1|Xg=5] - £?

@ Let T be the time of the (k — 1)** return to s. Note that T is a stopping
time.
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Number of returns

How do we show that

P[N(s) > k| Xo=5s] =P[N(s) > k—1|Xg=5] - £?

@ Let T be the time of the (k — 1)** return to s. Note that T is a stopping
time.

@ By the Strong Markov property, we have

PIN(s) > k| T=nXr=s]|=P[N(s) > 1| Xy =s] = f,.
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Number of returns

How do we show that

P[N(s) > k| Xo=5s] =P[N(s) > k—1|Xg=5] - £?

@ Let T be the time of the (k — 1)** return to s. Note that T is a stopping
time.

@ By the Strong Markov property, we have

PIN(s) > k| T=nXr=s]|=P[N(s) > 1| Xy =s] = f,.

o By Bayes’ rule,

PIN(s) > k, T =n, Xy =s|=1f-P[T =n, X7 =s].
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Number of returns

@ Summing this over n and using the law of total probability, we have

P[N(s) > k] = P[N(s) > k, T < o0
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Number of returns

@ Summing this over n and using the law of total probability, we have
P[N(s) > k] = P[N(s) > k, T < oq]

= P[N(s) > k, T =n X7 =]
n=0
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Number of returns

@ Summing this over n and using the law of total probability, we have
P[N(s) > k] = P[N(s) > k, T < oq]

= P[N(s) > k, T =n X7 =]
n=0

s\'vor\ —— oo
N\wnl =f-Y P[T=nXr=s]
geof- "io/\/\/v\,
- - (N(d 2 k-l
Q ( L= 00) Q | Xo =S
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Number of returns

@ Summing this over n and using the law of total probability, we have
P[N(s) > k] = P[N(s) > k, T < oq]
= iIP’[N(s) >k, T=nXr=5]
n=0
= fs~iﬂj’[T: n, Xt = 5]

n=0
=f -P[T < ]
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Number of returns

@ Summing this over n and using the law of total probability, we have
P[N(s) > k] = P[N(s) > k, T < oq]
= iIP’[N(s) >k, T=nXr=5]
n=0
= fs~iﬂj’[T: n, Xt = 5]
n=0

=f -P[T < ]
= f;-P[N(s) > k — 1].
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Recurrence and transience

Let (X,)n>0 be a DTMC on S.

@ s € S is a recurrent state if f, = 1.
@ s € S is a transient state if f; < 1.
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Recurrence and transience

Let (X,)n>0 be a DTMC on S.

@ s € S is a recurrent state if f, = 1.
@ s € S is a transient state if f; < 1.

@ By the formula
fs

1-f

E[N(s) | Xo = s] =
we see that

o f; is recurrent <= E[N(s) | Xo = s] = co.
o f, if transient <= E[N(s) | Xo = s] < o0.
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