
STATS 217: Introduction to Stochastic Processes I

Lecture 9
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Multi-step transition probabilities

The transition probability pij tells us the probability of going from i to j in
one step, i.e.

pij = P[X1 = j | X0 = i ].

What about the probability of going from i to j in two steps i.e. what is

p2ij := P[X2 = j | X0 = i ]?

Well, to go from i to j in two steps, we must go from i to some state k ∈ S
in one step and then from k to j in one step.
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Multi-step transition probabilities

Using the law of total probability, we have

P[X2 = j | X0 = i ] =
∑
k∈S

P[X1 = k ∧ X2 = j | X0 = i ]

=
∑
k∈S

P[X1 = k | X0 = i ] · P[X2 = j | X0 = i ∧ X1 = k]

=
∑
k∈S

P[X1 = k | X0 = i ] · P[X2 = j | X1 = k]

=
∑
k∈S

pikpkj

= (P2)ij .
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Multi-step transition probabilities

There is nothing special about two steps here and you should check that the
same argument gives

pnij := P[Xn = j | X0 = i ] = (Pn)ij ∀n ≥ 1.

Since for any non-negative integers `,m,

P`+m = P`Pm,

we obtain the Chapman-Kolmogorov equations

p`+m
ij =

∑
k∈S

p`ikp
m
kj .
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Stopping times

Let (Xn)n≥0 be a stochastic process on a discrete state space S .

We say that a random variable T is a stopping time if whether or not we
stop at time k i.e., the event {T = k}, can be determined by the values of
the process up to and including time k i.e., by X0, . . . ,Xk .

Example: let (Xn)n≥0 be a symmetric simple random walk starting at 0.
Then, τ1, the first time to hit 1 is a stopping time.

Indeed, for all k ≥ 0,

{T = k} = {X0 6= 1, . . . ,Xk−1 6= 1,Xk = 1}.

Non-example: let (Xn)n≥0 be a symmetric simple random walk starting at 0.
Then, τ ′ = τ1 − 1 is not a stopping time.
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Strong Markov property

Let (Xn)n≥0 be a DTMC on S and let T be a stopping time. Then, for all k ≥ 0,
all n ≥ 0, and for all i , j ∈ S ,

P[XT+k = j | XT = i ,T = n] = P[Xk = j | X0 = i ].

This is called the Strong Markov Property.

Why is this true?

Let Vn be the set of all vectors x = (x0, . . . , xn) ∈ Sn+1 such that

X0 = x0, . . . ,Xn = xn =⇒ T = n and XT = i .

Since T is a stopping time,

P[XT = i ,T = n] = P[(X0, . . . ,Xn) ∈ Vn].
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Strong Markov property

By the law of total probability,

P[XT+k = j ,XT = i ,T = n] =
∑
x∈Vn

P[Xn+k = j ,Xn = xn, . . . ,X0 = x0]

=
∑
x∈Vn

P[Xn+k = j | Xn = xn] · P[Xn = xn, . . . ,X0 = x0]

= P[Xk = j | X0 = i ]
∑
x∈Vn

P[Xn = xn, . . . ,X0 = x0]

= P[Xk = j | X0 = i ] · P[(X0, . . . ,Xn) ∈ Vn]
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Hitting times

Let (Xn)n≥0 be a Markov chain on S with X0 ∼ µ0.

This just means that the initial state X0 is a random variable with

P[X0 = j ] = µ0(j) ∀j ∈ S .

For a subset A ⊂ S , we define the first A-hitting time by

τA,µ0 := min{n ≥ 1 : Xn ∈ A}.

If µ0(s) = 1 for some s ∈ S (i.e., µ0 = δs) then we lighten the notation a bit
and write this as τA,s .

Note that the minimum is taken over n ≥ 1. Therefore,

τ{s},s =: Ts

is the first time we return to s, starting from s.
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Number of visits

For every s ∈ S , we let
fs := P[Ts <∞].

In words, fs is the probability that chain will ever return to s, provided that it
starts at s.

For every s ∈ S and initial distribution µ0, we let

Nµ0(s) =
∞∑
n=1

1[Xn = s].

In words, Nµ0(s) is the number of times we visit s (counting from time 1
onwards), starting with an initial state distributed according to µ0.

For lightness of notation, we set

N(s) := Nδs (s).
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Number of returns

Just as for the symmetric simple random walk, we have for any k ≥ 1 that

P[N(s) ≥ k | X0 = s] = P[N(s) ≥ k − 1 | X0 = s] · fs .

By induction, this shows that for all k ≥ 1,

P[N(s) ≥ k | X0 = s] = f ks .

Therefore, for all k ≥ 0

P[N(s) = k | X0 = s] = f ks (1− fs),

and

E[N(s) | X0 = s] =
fs

(1− fs)
.
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Number of returns

How do we show that

P[N(s) ≥ k | X0 = s] = P[N(s) ≥ k − 1 | X0 = s] · fs?

Let T be the time of the (k − 1)st return to s. Note that T is a stopping
time.

By the Strong Markov property, we have

P[N(s) ≥ k | T = n,XT = s] = P[N(s) ≥ 1 | X0 = s] = fs .

By Bayes’ rule,

P[N(s) ≥ k,T = n,XT = s] = fs · P[T = n,XT = s].
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Number of returns

Summing this over n and using the law of total probability, we have

P[N(s) ≥ k] = P[N(s) ≥ k ,T <∞]

=
∞∑
n=0

P[N(s) ≥ k,T = n,XT = s]

= fs ·
∞∑
n=0

P[T = n,XT = s]

= fs · P[T <∞]

= fs · P[N(s) ≥ k − 1].
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Recurrence and transience

Let (Xn)n≥0 be a DTMC on S .

s ∈ S is a recurrent state if fs = 1.

s ∈ S is a transient state if fs < 1.

By the formula

E[N(s) | X0 = s] =
fs

1− fs
,

we see that

fs is recurrent ⇐⇒ E[N(s) | X0 = s] = ∞.
fs if transient ⇐⇒ E[N(s) | X0 = s] < ∞.
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